CGo 8[@ A Software Defined WAN
Architecture

Cloud Computing Requires
Massive Wide-Area Bandwidth Google

e Low latency access from global audience and highest
levels of availability
o Vast majority of data migrating to cloud
o Data must be replicated at multiple sites
e \WAN unit costs decreasing rapidly
o But not quickly enough to keep up with even faster
iIncrease in WAN bandwidth demand

WAN Cost Components Google

e Hardware
o Routers
o Transport gear
o Fiber
e Overprovisioning
o Shortest path routing
o Slow convergence time
o Maintain SLAs despite failures
o No traffic differentiation
e QOperational expenses/human costs
o Box-centric versus fabric-centric views

Why Software Defined WAN Google

e Separate hardware from software
o Choose hardware based on necessary features
o Choose software based on protocol requirements
e Logically centralized network control
o More deterministic
o More efficient
o More fault tolerant
e Automation: Separate monitoring, management, and
operation from individual boxes
e Flexibility and Innovation

Result: A WAN that is more efficient, higher
performance, more fault tolerant, and cheaper

Google's Software
Defined WAN

Google Confidential and Proprietary

A Warehouse-Scale-Computer
(WSC) Network

Carrier/ISP
Edge

Google's WAN Google

e [wo backbones

o |-Scale: Internet facing (user traffic)
o (G-Scale: Datacenter traffic (internal)

e \Widely varying requirements: loss sensitivity, topology,
availability, etc.

e Widely varying traffic characteristics: smooth/diurnal vs.
bursty/bulk

Google's Software Defined WANGoogle

P — P
. *-saskatchewan .
Edmenton Skatchewang
P
Vinius A (Msicx) Mogiles,
vo e

Bena)

Pecin Trojmiasto

4 o
Serlin - Bydgoszez

@nnoverk Polska

Btschland o olescen

i

b
“ou

B canicurt
Main

Fington: 1* RS %4 . Dak oy 1T Kczech Rep. g 0ktrava:
Washington M Minnesota) iaints QISR f0RHEr
Portland _~ /‘ g AP | - b Munchen, ens|
o q Minneapolis 5 Yo, ourg 6. ¢ Wen®8” Siovg
< o ia. Osterreichy” ™
{ g SAustris 2
\ 3 { i Hun
o 5 - N { Bay,of | IMoges© ©Lyon=tMiZnos 1 - Zagred g"y
: :Il:o)i P % of L . Biscay, 0 Tomg0 s WHrvatska =
hijiazhuan, Tianjin . o) b Bordeaux 3y, is .0 0 Croatis
e =3 . “Pennsylvania TBulouse 0" i
A hiladelphia O Vigo WL - Aoad,
Taiyuan = L ¥ v/au%aou{: Zaiaéozn
inan San 0 R
A eI oiockan ; v oors
o o a0
Zhengzhou eld - SKsenr - LT0n
18 "'*Sh hai o o ucrgue. O lzmir Kngya Tur
anghai X VA]
‘Wuhan ° 2 e~ Arizon “* New -
a‘;;x Hefei %0 G% 3 -- Ruersice 0PHoen | Mexico © . Oalas
Al Lha< Liueia-OXe, oTucson) 3
b Ty Hangzhey D e it Texas L
A O st
o -
.Changsha Fuzhou GOS0 cnihuanussS ASanio® Houeian
¥
Guangzhou - r
=5 ' Toireon | Monterrey.Steroica
i & o g6™
~ © Culiacan " Saltilio Mexico.

Y - 0 Ciudad)
- =3 gl azatlan México °V|I|510_na 'a]HHabana)
4 Leon.de]
Aguascalientes ©' | os Aldama) Merda Cancun!
(GUadalaara®_ yforeiia o A
Veracruz, © Campeche)
(€olima®. n.urPl0 " fg

B
fusuanga Phillppines
Ranay)

G-Scale Network Hardware Google

e Built from merchant silicon
o 100s of ports of
nonblocking 10GE
e OpenFlow support
e Open source routing stacks for
BGP, ISIS
e Does not have all features
o No support for AppleTalk...
e Multiple chassis per site
o Fault tolerance
o Scale to multiple Tbps

G-Scale WAN Deployment Google

R N
DC Network (WAN - /) DC Network
-)
~

e Multiple switch chassis in each domain
o Custom hardware running Linux
e Quagga BGP stack, ISIS/IBGP for internal connectivity

Mixed SDN Deployment Google

Data Center Cluster
Network Border | >
Router EBGP

< >

IBGP/ISIS to
remote sites

(not representative of actual topology)

Mixed SDN Deployment

Data Center
Network

Cluster
Border
Router

EBGP

Google

-

IBGP/ISIS to
remote sites

-

Mixed SDN Deployment Google

—

IBGP/ISIS to
remote sites

Data Center Cluster
Network Border EBGP

Router

OFA

OFA

<
IBGP/ISIS to

remote sites

Mixed SDN Deployment

Data Center
Network

Cluster
Border
Router

<
IBGP/ISIS to

remote sites

Google

e SDN site delivers full interoperability with legacy sites

Mixed SDN Deployment

Google

Data Center
Network

Cluster
Border
Router

<
IBGP/ISIS to

remote sites

e Ready to introduce new functionality, e.g., TE

Bandwidth Broker and
Traffic Engineering

Google Confidential and Proprietary

High Level Architecture Google

TE and B/w Allocation Control Plane

SDN API
B/W Broker TE Server < -

N,

Collection /
Enforcement

SDN Gateway to
Sites

Traffic sources
for WAN

SDN WAN
(N sites)

Data Plane

High Level Architecture Google

TE and B/w Allocation S [PETE
SDN API
B/W Broker TE Server < »{ SON C;?[teesw ayto

Collection /
Enforcement

Traffic sources
for WAN

SDN WAN
(N sites)

Data Plane

Bandwidth Broker Architecture Co gle‘

1
Admin Policies [
Global demand
to TE-Server
Global Broker _—

Network Model
>

_/—

Usage Limits

 DataCenter [DataCenter [‘
Site Broker Site Broker
| ; | 5 (optional)

High Level Architecture Google

TE and B/w Allocation Control Plane

SDN AP
B/W Broker P | SN ety e

Collection /
Enforcement

Traffic sources
for WAN

SDN WAN
(N sites)

Data Plane

TE Server Architecture |
Google

Demand Matrix Abstract Path Assignment
{src, dst --> utility curve } {src, dst --> paths and weights }
TE Server
1
| Flow | ! Path Allocation Path
Global Broker Manager Algorithm Selection
Per Site Path
Site level edges with Mcanlpulathon
RTT and Capacity + R .
Topology
Manager 4—__ Gateway
Interface up/down \
status OFC S1 OFC Sn

High Level Architecture Google

TE and B/w Allocation

B/W Broker TE Server

Control Plane

SDN API

N,

Collection /
Enforcement

Traffic sources
for WAN

SDN Gateway to
Sites

SDN WAN
(N sites)

Data Plane

Controller Architecture

TE Server / SDN Gateway

Topo /
routes

TE ops

HW Tables

Switches in DC 1

Google

Controller Architecture Google

SDN
Gateway

N
~
' 1 ~

|
s) ~

non-TE (ISIS) path

——

Utilization (percent)

Sample Utilization

100.0 [

80.0 [

60.0 [

40.0 1

0.0

Sun 01:00

Sun 09:00 Sun 18:00 Mon 02:00 Mon 11:00 Mon 19:00 Tue 04:00 Tue 12:00

Benefits of Aggregation Google

" ISIS Changes '
Tunnels Changes

of changes per minute

e \Vedl

0105 0110 0115 01:20 0125 01:30 01:35 0L:40 0145 OL50 O0L55 0200 0205

Convergence under Failures Google

odwnnel no-TE: traffic drop ~ 9 sec
C with-TE: traffic drop ~ 1 sec

failure
notification

» //ﬁLMIops

TE Server

Without TE: Failure detection and
convergence is slower:
e Delay 'inside' TE << timers for detecting
and communicating failures (in I1SIS)
e Fast failover may be milliseconds, but not
guaranteed to be either accurate or "good"

G-Scale WAN History

Google

SDN fully
Deployed
., Exit testing SDN ¢ T
£ "opt in" rollout
- network Central TE
Deployed
Jan/2010 Jul/2010 Jan/2011 Jul/i2011 Jan/2012

Range of Failure Scenarios Google

* TE2
*TE1- *

Potential failure
condition

* indicates
mastership

* OFCA1 OFC2*
OFCA1 * OFCZ* * *

mouter * mouter *

Trust but Verify:
Consistency Checks Google

TE View OFC View Is Valid Comment

Clean Clean yes Normal operation.

Clean Dirty no OFC remains dirty forever

Clean Missing no OFC will forever miss entry

Dirty Dirty yes Both think Op failed

Dirty Clean yes Op succeeded but response not yet received
by TE

Dirty Missing yes Op issued but not received by OFC

Missing Clean no OFC has extra entry, and will remain like that

Missing Dirty no (same as above)

Implications for ISPs Google

e Dramatically reduce the cost of WAN deployment
o Cheaper per bps in both CapEx and OpEx
o Less overprovisioning for same SLAs
e Differentiator for end customers
o Less cost for same BW or more BW for same cost
e Possible to deploy incrementally in pre-existing network
o Leveraging known techniques for delivering any new
functionality

Conclusions Google

e Dramatic growth in WAN bandwidth requirements
o Every 10x, something breaks
o Existing software/hardware architectures make it
Impractical to deliver cheap bandwidth globally
e Software Defined Networking enables
o Separation of hardware from software
o Efficient logically centralized control/management
o Innovation and flexibility
e Deployment experience with Google's global SDN
production WAN
o It's real and it works
o This is just the beginning...

Thank you!

Google Confidential and Proprietary

Driving Down BW Costs Google

e Traffic Engineering

o Latency sensitive, revenue generating, bulk transfer

o End to end path quality in application provisioning
Automation

Software fault tolerance
Improved route convergence
Leverage commodity switches

Cloud Computing Google

Increasingly, computation and storage migrating to a
planetary set of data centers

e Data storage

o Personal files, logs, company data
e Application execution

o Word processing, email, calendar
e Content retrieval

o Photos, music, video
e \Web services

o Search, social, e-commerce
e |arge-scale data processing

o MapReduce, Hadoop

Max-min fairness on Utility Function Google

e Utility function summarizes priority for flow aggregates
o Steeper slope --> higher priority
o Piecewise linear, monotonically increasing function
o Maps utility to bandwidth
e Each flow receives max-min share based on utility function
o Flows bottlenecked on same link receive same utility

Weight 1 Weight 2
4 A
= . S
_'9 220G g -9 220G ‘
2 : = :
2 g :
s P c - :
m : 3 :
1 1 | |
1 2 1 5
> -

Utility Utility

Utility Curve Aggregation Google

3 users with same slope but
different demands. (10g, 20g,
30g demand respectively)

60G
50G /
A : A :
c A oanes b : c :
.'5 ¢ 5 5 30G T
% 20G | _%
c : c | 20GT ;_
o o : m :
10 | 10G :

1 2 3 1 '2 ;

Jtility Utility

WAN SDN Architecture

__

(Bandwidth
OA&M i BM Broker TE Server
> cLi/ | . T I
1o tools Monitor [ET—

model

Data Centér Site

4 Paxos
Y I |

Demand Aggregation and PrioritizationGO gle‘

e Hosts provide a collection of flows: {src, dst, user,
demand_bps}
o src/dst are aggregated at cluster level
o Aggregate stats across multiple TCP connections
e Broker hierarchy aggregates data for scalability
o 10,000x hosts, but 10x users and x src/dst pairs
o Sub brokers aggregate flows from hosts to {src, dst}
-> {utility curve} tuples
e Global bandwidth broker: Only deals with {src, dst} -->
{utility curve} tuples
o Further aggregation before reporting to TE Server

Scale Scale Scale Co gle‘

User base
o World population: 6.676 billion people (June'08, US Census est.)
o Internet Users: 1.463 billion (>20%) (June'08, Nielsen/ITU)

e Google Search: More than Billion Searches Every Day

Geographical Distribution
o Google services are worldwide: over 55 countries and 112 languages
e More than half of our searches come from outside the U.S.

Data Growth
e Web expands/changes: billions of new/modified pages every month
o Every few hours we crawl/refresh more than entire Library of Congress
e YouTube gains over 43 145 1824 24 60 hours of video every minute, 4+ billion
views every day

Latency Challenge

e Speed of Lightin glass: 2 x 10*8 m/s = 2,000 km / 10 ms
e “Blink of an eye response” = 100 ms

ATLAS 2010 Traffic report

Posted on Monday, October 25th, 2010 | Bookmark on del.icio.us GO gle
Google Sets New Internet Traffic Record

by Craig Labovitz

This month, Google broke an equally impressive Internet traffic record — gaining
more than 1% of all Internet traffic share since January. If Google were an ISP, as
of this month it would rank as the second largest carrier on the planet.

Only one global tier1 provider still carries more traffic than Google (and this ISP
also provides a large portion of Google's transit).

i
an
m
i
=
U
)
=
i
=%
u
=
e
a
e
E

Google as a Percentage
of All Internet Traffic

http://asert.arbornetworks.com/2010/10/google-breaks-traffic-record/
http://en.wikipedia.org/wiki/Tier_1_network

Handling Failed Operations Google

e A single TE Op corresponds to multiple RPCs from OFC to
Devices
o Every op could result in partial success
o Resulting state can be: old value, new value or mix
e Add Status bit (Clean/Dirty) to every TE DB entry
e TE Server Behavior:
o 'Key' is marked dirty in TE DB upon issuing operation
o 'Key' is marked clean in TE DB when OFC returns success
o If 'Key' is dirty, it can be cleaned only with further ops
m Assume idempotent operations

Dirty Keys Example 1 Google

Actual TE DB Desired TE DB Ops
EVENt Order . . oo
T1, T2, TG1: T1(0.75), T2 (0.25)
T1, T2 and TG1: T1(0.5), T2 (0.5)
Ops = TG1 Modify
Retry while
T1, T2, TG1: (Dirty) Dirty
\/

T1, T2, TG1: T1(0.5), T2 (0.5)

Dirty Keys and Dependencies Google

Actual TED Desired TED Ops

T1, TG1: T1
Event Order
T2 and TG1: T2
T1, T2, TG1: T2 (Dirty)
iff
T2 and TG1: T2
\/ N

-T1, Modify TG1 Potential Blackholing as TG1

may use T1

T2, TG1: T2 (Dirty)

Protocol Challenges Google

e Dealing with failures gracefully
o Lost and out-of-order RPCs
o Switch, server, and application failures
e Failure isolation
o Site A to Site B problem should not affect Site A to Site C
e Ensuring consistent TE DB view between OFC, TE and devices

across restarts

Balboa Gateway - Overview Co gle

TE |- [TE
Server & Server

» Global
TE :: topo, stats, routes,
ops :: tunnels, mastership
L TE Acks

Gateway x5 Gateway

e o
oV TN PEACERNG

" Per site
TE . topo, stats, routes, o \
ops !! tunnels, mastership .-~ . &7
) TE Acks T

...

Site Level Aggregation: Pros Google

e Local failure reaction for most failures w/out requiring TE
server cooperation
o Single trunk failures, single switch failure, etc
o Means TE server failure is not catastrophic
e Tunnel management requires less hardware resources
e Algorithm and TE-Server scalability is much improved
o Site-level tunnels
e Simplified debugging

Site Level Aggregation: Cons Google

e Optimization under asymmetric failure harder
o requires re-balancing traffic within site

e Each op applied on multiple switches
o Protocol must be robust to partial failures

e Switch restart is more challenging
o Hardware up but device not yet programmed

e OFC implementation of synching router TE state on
reboot is hard. Because TED is changing on the fly
(since the other router is still up)

e Barriers with logical time to ensure routers accept
programming with respect to fixed topology view

Gateway Design Highlights Google

Aggregation for 'read only' network state from each OFC
Proxy 'TE op to site X' from Master-TE-Server to master
OFC for site X

Merges and publishes OFC state asynchronously

o Topology, routes, tunnels, and network stats
Stateless

TE Topology Manager Google

e From current 'trunk states' derive an aggregated
topology that will be used as input to the algorithm

O

O

Input: Full topology dump from Gateway (from all
sites). Per trunk level stats.
Output: A list of 'site-site’' edges with capacities

e Delivers an asynchronous event to main loop to trigger
an algorithm run on any change
e C(Challenges:

O

O
O
O
O

Handling cut-off aggregation

Handling drains

Dealing with 'trunk’ flaps and rate-controlling churn
Distinguishing important vs. minor changes

Ability to suppress triggers if topology changes are
minor and are flapping

Closed Loop Test Framework Google

e 'N'hosts to simulate 'N' nodes in network

LTE Demand o Arreal application runs at each of the 'N'
Server hosts
E'va h o Hosts are source of application demand
! \erarchy e BWE is used for admission control for apps
Gateway e All control servers are real binaries
_Service e Only fake aspect is:
/I\ 111 o virtualization of the actual switch
o how switches are connected (topology)
[OFC] [OFC] [OFC] Real Hosts and with what capacities
I | I | | B .
Virtualized Switches

Feedback loop illustration:
e At start, TE programs only shortest path since
demand is low
e BwE throttles apps to shortest path capacity
TE observes demand ~= capacity, and creates more

Example switch 1G 2G paths
configuration: ‘
< G e Once paths are installed, BWE observes increased
16 available capacity, and throttles apps at higher limits

Enabling Testbeds

|

Gateway

|~
TE ops Topology updates

(reg/resp) l/

Prod TE Server

Bandwidth
Broker

P |
_ Demand Matrix

Fake Gateway

Test Servers
Exactly same input

as production
instance

E ops
(reqg/resp)

Google

B4 TE Components Overview

H Hosts Source of demand an%nn;otategmangd with

oS user
ts
Sl BWE Hierarchy + Admission control and demand aggregation
te Sinapse
o Bw Demand prioritization
dey-
cont |- TE Server Determines Network Pathing
roller dev
g a Manages per site forwarding state in a make-
S before-break manner
. Provides rich control to manipulate network state
! and do drains
dev roller . S|
t
F§N Gateway Provides google3 API to see and manipulate
network state

dey-

cont
roller dev OFC Manages devices in a site using open flow
a
Provides backup routing (ISIS based)
....................... oS
ts

Devices Forwarding elements supporting Open Flow

B4 TE Components Overview
Google

HOSl
Fwd
dev Slte
Fwd <
dey_ -
. Fwd
dev
Fwd
Controll dev
er
Fwd
Slte dev . 0
1 Fwd .
dev N
l-Wd “ : *
dev o N
Fwd *
dev : Controll L
er . Fwd
< dev Slte
. v
S Fwd 2
. dev
S E Fwd
N o dev
* Fwd
—— 1 " PP NG Controll 1 dev
Biw | Snap ral er
.. ate
Enforc —%E—f,) "]

er

Example of Traffic Split (75%/25%&

Traffic splitting is decided at the BFs

using a Select-Group OpenFlow 4 Site C
construct. One ECMP entry is used for

every quartile Tunneled traffic.

CF

CF

T1edges: —— /\/\
T2 edges: —_— N) %

~

Shared edges:

/

Y/

oogle

CF

7/ \\

g

CF

CF

N A

k Site A

CF

Site B

BF

TE Path Allocation

Google

flow group Allocation Paths and splits
CHS to MRN 320 Gbps out of |CHS-MRN: 75%
BE1 320 Gbps CHS-ATL-MRN: 25%

Per Site State

1280 Gbps
6 ms

e Tunnel: A site level path (at all
sites in the path)

CHS State

. i MRN Clusters BE1: TG1
e Tunnel group: Split between Tor That T T

multiple tunnels (at ingress
. T1: 1P1, CHS->MRN
site) T2: P2, CHS->ATL->MRN

Sourcé H

e Flow Group to Tunnel Group
mapping (at ingress site) -|-1l >
AT

Destina(R
. L
tion
MRN State ATL State

T1: IP1, CHS->MRN
T2: 1P2, CHS->ATL- T2: IP2, CHS->ATL->MRN

>MRN

Operationally: Centralized vs.
Distributed Google

® Upgrades: Distributed models requires you to upgrade all routers. This is
safer but slower. In centralized, we have handful of servers. lts faster but
can be riskier.

® How can we make Centralized Safer ?
o Design server to have well defined and abstract inputs and outputs.
Most of the logic is stateless and determinstic.
o From production instance allow replicating 'abstract inputs' to test
servers. (available during regular developer testing)

B Allows code to be exposed to reality much sooner
e New features are designed so that they can be enabled/disabled on a flow
by flow basis
e What if there is a malicious bug in centralized server ?
o This is arisk.
o Rely on regular traffic monitoring to detect and fix such conditions

manually
o Quick manual procedures to fallback to distributed routing

Sample WAN Google

200 Gb/s

400 Gb/s

West --> East demand: 400Gb/s

Traffic Engineering Example Google

moes

200 Gb/s

400 Gb/
\s 400 Gbis /

West --> East demand: 300Gb/s

WEST

East

Central

Traffic Engineering Example Google

WEST

200 Gb/s

400 Gb/
\s 400 Gb/s

Central

East

West --> East demand:
100Gb/s low latency
200Gb/s bulk transfer

Path Allocation Algorithm Google

e Path Selection
o Find static k shortest possible paths between src and dst
e Path Ordering and Grouping
o Group similar latency paths into path preference groups
o Sort paths preference group by latency
e Compute Flow Group Allocation:
o For each flowgroup, input:
m Sorted paths preference groups
m Demand with priority (utility function) from broker
o Exhaustive waterfill algorithm
a Fill preferred paths first

Path Allocation Algorithm (cont) Google

e Paths splits determination
o For each flowgroup:
m Take allocation to its paths
m Initial splits of paths is the ratio of allocations
m Quantize the splits to match hardware restrictions
e Final Output: Quantized path splits for each flow group
o Example: Flow: A:B_HIPRI: A->C->B 75%, A->B
25%

TE Flows Manager Google

e Role: Provide a unified demand matrix to the allocation
algorithm

e |nput: Global Demand from Bandwidth-Broker

e Output Interface: {src, dst, pathing-class} -> utility curve
o aggregate data across multiple QoS into separate

pathing classes

o Smooth demand and peak management
o EXxpire old data
o Log data for replay

Tunneling Module Google

e Key Functions:
o Maintains a TE-Session with each OFC (proxied via
Gateway)
o Translate Path-Assignment to per site TE State
o Allocates free IP-Addresses to New Paths
o Manages deletion of old paths
e Gets trigger from algorithm module to install new state
o Computes per site 'diffs' and installs the diffs on
each site
o Handles failed ops and retries
o Ensures proper sequencing of operations
e Provides persistent state across restarts of TE server
(by storing them in Paxos)

Per-Site Traffic Eng DB (TED)

e Collection of: Key, Value tuples

Google

Key Types

Value

Tunnel ID

Site level path and IP Address

Tunnel Group ID

List of <tunnel id, weight> tuples

Flow Group ID

DSCP match spec,
Destination cluster prefixes,
Tunnel Group ID

Tunnel Management module Google

e Input: TE Server
o Desired Path Allocation for
All flow groups Path || . runnel
o Current Configured TED at each Site Allocator | | Management
e Output:
o New Desired TED at each site

o A collection of 'Ops' such that:
m for each site: Current TED + Ops => Desired TED
o A consistent (make-before-break) schedule of 'Ops'

TED And Ops: Example (Contd...) Google

Site Key Value Comment OpS SChedUIe
A T A->B Tunnel

(1.2.34) A: +T1 A: +T2 B: +T1 B: +T2 C: +T2
A T2 A->C->B Tunnel

(1.2.3.5)
A TG1 T10.75720.25 Tunnel Group \> l “//
A FG1 TG1, B Cluster Flow Group Mappng

Prefixes A:

+TG1

B T1 A->B Tunnel

(1.2.34) A:
B T2 A->C->B Tunnel

(1.2.3.5) +FG1
C T2 A->C->B Tunnel

(1.2.3.5)

TED And Ops: Example (Contd...) Google

New Topology And Paths

Src 100% Dst New Desired TED
) Site Key Value Comment
A T1 A->B Tunnel
(1.2.34)
\ A TG1 T11.00 Tunnel Group
A FG1 TG1, B Cluster Flow Group Mappng
@ Prefixes
Ops Schedule
B T1 A->B Tunnel
- (1.2.3.4)
A: Modify
TG1 to not

[

use T2

|

—

() o) (o=

Computing Ops and Schedule Google

e Computing 'ops'": Figure out 'diffs' between current and desired TED
o Each 'diff' entry corresponds to one 'op':
m Add, Modify or Delete
e Computing schedule of 'Ops' across all sites
o For each 'Op' also compute 'Dependent ops'.
m Example: 'Add TG1' has 'Add T1' as a dependent op
o An 'Op' is issued only when all Ops it depends on are successful.

If All 'Ops’' succeed then OFC TED is same as Desired TED

Dirty Keys and Dependencies Google

e Solution:
o Until an 'op' succeeds on a 'key' track old values as well
m Stored in per key: ValuelLog
o In previous example:
m TG1 has ValuelLog: {T1, T2}

e Notes:
o ValuelLog is valid only if a key is dirty
o Only used for determining 'ops' dependencies
o It is not interpreted by OFC

Dependency Across Set of Ops Google

Set of Ops

Desired ‘ Desired Desired
TED1 TED2 TED3

Set of Ops

Op 1: Mod TG1 RPC’ Op 2: Mod TG1

Timeout: Success:
T1:0.25,T2:0.75 T71:05,72:05

Session Setup Protocol (1 of 2) Google

e Session setup would provide:
o TE mastership to OFCs and vice versa.
o TE Server with Current TED (when TE restarts)
o OFC Server with Current TED (when OFC restarts)
o Mechanism to enforce inorder execution of TE ops

o Ensures OFC TEDs do not change without notifying TE

Session Setup Protocol (2 of 2)

e Session Create (Initiated by TE):
o Exchange TE id (TE master instance unique ID)
o Exchange OFC _id (OFC master instance unique ID)
o Exchange TE generated Initial Sequence Id
o Session_id: (TE_id, OFC_id)
e OFC accepts Ops with:
o op.session_id == current session_id
o op.sequence_id >= last seen sequence _id
e Session Initialize:
o TE->OFC: Get TED
m Success: TE Usesthat TED
m Failure: If TE has a TED it sets that TED on OFC
o If Neither has TED, TE resets that Site

e Henceforth, issue ops based on 'Desired - Current' TED
o OFC checks session validity on all '‘Ops'

Google

TE Server Configuration Options

e VVarious knobs to control TE Scope at TE-Server

o disable site completely:

m Example: disable_site: ATL

m No transit, ingress or egress TE traffic goes via ATL
o disable a flow group

m Example: disable flow _group: src: ATL dst: ANY

m Traffic from ATL->* does not use TE
o disable globally [Big Red Button]

m Example: disable_site: ANY

e Knobs affecting pathing decisions
o link metric (for shortest path) and link fill threshold (like rsvp)
m the metrics are specified at a Site granularity
o weights granularity (Balboa supports weights of multiples of 0.25)
o maximum number of paths for a flow group (max value 4)
o grouping threshold: group paths with cost within threshold together

Google

Summary: Solutions for challenges Google

e Dealing with failures gracefully
o Introduce "Dirty" status per TED entry
o Single failures handled gracefully, multiple failures converge:
m React immediately to router down, in controlled manner to router up. Add
down_db to TED
o Add session/seq number to ops
e Failure isolation
o Support streaming ops
e Ensuring consistent TED view between OFC, TE and devices across restarts
o Cache TED in OFC, TE
o Smart sync from OFC to devices
o Do Automatic Consistency checks at the TE-Server
e Scalable: Provide abstraction to TE.
o OFC provides abstraction of site
o TE maintains and manipulates state at site level
e Allow manual control
o Provide TE config controls, CLI command on OFC, add Drain-DB to TED

Summary: TE protocol

information flow

.................

..z OFCY* JOFCZ
] - 1>

Topology / OFC
master announcement

—» TE session create
< -» \Master election
. TE's per site TED

® OFC'ssite TED
£ OFC per router TIB

-

TE DB Consistency Checks Google

e Periodically perform TED consistency checks between the master

TE Server and each OFC

o Initiated by TE Server
o Alert if TEDs are found to be inconsistent (indicates a bug !!)
m [E-Ops can restart the master TE Server which in many case will fix the
problem
e Consistency check algorithm challenges:
o is not same as identical TED
o Has to work in face of streaming operations
o Should have minimal interference to TE normal operation
m Should not 'lock' TE-Server and/or OFC
o Should be accurate (no false positive) for it to be effective

e Has been instrumental in finding hard to reproduce bugs
e More details in design document

Handling router restarts

TE Server

OFC X

=

i

OFCY

'C' Up But Not TE
Programmed

Google

e When a router goes down, neighbors
react immediately

e \When CF comes back up, neighbors
must not send TE traffic unless its TE
state is programmed

e [ssue:
o X sees trunks to C as up
o X needs to know C is not TE ready
(but is fine for ISIS)

Adding Down DB to TED

Down

OF
CX

l>,l

Topo:
C_Down

TE
Server

Topo:
C _Down
— — I
OF
CY

{

'C' Up But Not
TE
Programmed

Google

e TEServer communicates to X that 'C' is not TE
Ready (via TED)

e Sequence (on router down):
o OFC marks in topology C_not_te ready
o For all 'Y' neighbors: TE 'desired TED' has:
C_not_te ready
o TE updates neighboring OFCs
e OFC: If arouter is not _te ready do not use
that router as next hop
e Sequence (on router up):
o Y programs router C completely
o Y marks C as te_ready in topology
o TE deletes C_not_te ready from TEDs
o X OFC can now start using C
e Assumes: propagating te ready is faster than

router restart

Traffic Engineering Database

Topology And Paths
Src 75% Dst

Google

Site |Key Value Comment

A T1 A->B Tunnel
(1.2.3.4)

A T2 A->C->B Tunnel
(1.2.3.9)

A TG1 T1 0.75 T2 0.25{Tunnel Group

A FG1 TG1, B Cluster |Flow Group
Prefixes Mappng

C T2 |A->C->B [Tunnel

(1.2.3.5)

