Google A Software Defined WAN Architecture

Cloud Computing Requires Massive Wide-Area Bandwidth Google

- Low latency access from global audience and highest levels of availability
 - Vast majority of data migrating to cloud
 - Data must be replicated at multiple sites
- WAN unit costs decreasing rapidly
 - But not quickly enough to keep up with even faster increase in WAN bandwidth demand

WAN Cost Components

- Hardware
 - Routers
 - Transport gear
 - Fiber
- Overprovisioning
 - Shortest path routing
 - Slow convergence time
 - Maintain SLAs despite failures
 - No traffic differentiation
- Operational expenses/human costs
 - Box-centric versus fabric-centric views

Why Software Defined WAN

- Separate hardware from software
 - Choose hardware based on necessary features
 - Choose software based on protocol requirements
- Logically centralized network control
 - More deterministic
 - More efficient
 - More fault tolerant
- Automation: Separate monitoring, management, and operation from individual boxes
- Flexibility and Innovation

Result: A WAN that is more efficient, higher performance, more fault tolerant, and cheaper

Google's Software Defined WAN

A Warehouse-Scale-Computer (WSC) Network Google Carrier/ISP Edge Google Edge Google **Data Center** Google Carrier/ISP Google Edge Edge Edge Carrier/ISP Edge Google **Data Center** Google **Data Center**

Google's WAN

- Two backbones
 - I-Scale: Internet facing (user traffic)
 - G-Scale: Datacenter traffic (internal)
- Widely varying requirements: loss sensitivity, topology, availability, etc.
- Widely varying traffic characteristics: smooth/diurnal vs. bursty/bulk

Google's Software Defined WANGoogle

Philippines

G-Scale Network Hardware

- Built from merchant silicon
 - 100s of ports of nonblocking 10GE
- OpenFlow support
- Open source routing stacks for BGP, ISIS
- Does not have all features
 - No support for AppleTalk...
- Multiple chassis per site
 - Fault tolerance
 - Scale to multiple Tbps

G-Scale WAN Deployment

- Multiple switch chassis in each domain
 - Custom hardware running Linux
- Quagga BGP stack, ISIS/IBGP for internal connectivity

(not representative of actual topology)

SDN site delivers full interoperability with legacy sites

Ready to introduce new functionality, e.g., TE

Bandwidth Broker and Traffic Engineering

High Level Architecture

High Level Architecture

Bandwidth Broker Architecture

(

High Level Architecture

TE Server Architecture

High Level Architecture

Controller Architecture

Controller Architecture

Sample Utilization

Benefits of Aggregation

Convergence under Failures

no-TE: traffic drop ~ 9 sec with-TE: traffic drop ~ 1 sec

Without TE: Failure detection and convergence is slower:

- Delay 'inside' TE << timers for detecting and communicating failures (in ISIS)
- Fast failover may be milliseconds, but not guaranteed to be either accurate or "good"

G-Scale WAN History

Range of Failure Scenarios

Potential failure condition

* indicates mastership

Trust but Verify: Consistency Checks

TE View	OFC View	Is Valid	Comment
Clean	Clean	yes	Normal operation.
Clean	Dirty	no	OFC remains dirty forever
Clean	Missing	no	OFC will forever miss entry
Dirty	Dirty	yes	Both think Op failed
Dirty	Clean	yes	Op succeeded but response not yet received by TE
Dirty	Missing	yes	Op issued but not received by OFC
Missing	Clean	no	OFC has extra entry, and will remain like that
Missing	Dirty	no	(same as above)

Implications for ISPs

- Dramatically reduce the cost of WAN deployment
 - Cheaper per bps in both CapEx and OpEx
 - Less overprovisioning for same SLAs
- Differentiator for end customers
 - Less cost for same BW or more BW for same cost
- Possible to deploy incrementally in pre-existing network
 - Leveraging known techniques for delivering any new functionality

Conclusions

- Dramatic growth in WAN bandwidth requirements
 - Every 10x, something breaks
 - Existing software/hardware architectures make it impractical to deliver cheap bandwidth globally
- Software Defined Networking enables
 - Separation of hardware from software
 - Efficient logically centralized control/management
 - Innovation and flexibility
- Deployment experience with Google's global SDN production WAN
 - It's real and it works
 - This is just the beginning...

Thank you!

Driving Down BW Costs

- Traffic Engineering
 - Latency sensitive, revenue generating, bulk transfer
 - End to end path quality in application provisioning
- Automation
- Software fault tolerance
- Improved route convergence
- Leverage commodity switches

Cloud Computing

Increasingly, computation and storage migrating to a planetary set of data centers

- Data storage
 - Personal files, logs, company data
- Application execution
 - Word processing, email, calendar
- Content retrieval
 - Photos, music, video
- Web services
 - Search, social, e-commerce
- Large-scale data processing
 - MapReduce, Hadoop

Max-min fairness on Utility Function Google

- Utility function summarizes priority for flow aggregates
 - Steeper slope --> higher priority
 - Piecewise linear, monotonically increasing function
 - Maps utility to bandwidth
- Each flow receives max-min share based on utility function
 - Flows bottlenecked on same link receive same utility

Utility Curve Aggregation

3 users with same slope but different demands. (10g, 20g, 30g demand respectively)

WAN SDN Architecture

Demand Aggregation and Prioritization Google

- Hosts provide a collection of flows: {src, dst, user, demand_bps}
 - src/dst are aggregated at cluster level
 - Aggregate stats across multiple TCP connections
- Broker hierarchy aggregates data for scalability
 - 10,000x hosts, but 10x users and x src/dst pairs
 - Sub brokers aggregate flows from hosts to {src, dst}-> {utility curve} tuples
- Global bandwidth broker: Only deals with {src, dst} --> {utility curve} tuples
 - Further aggregation before reporting to TE Server

Scale Scale Scale

User base

- World population: 6.676 billion people (June'08, US Census est.)
- Internet Users: 1.463 billion (>20%) (June'08, Nielsen/ITU)
- Google Search: More than Billion Searches Every Day

Geographical Distribution

- Google services are worldwide: over 55 countries and 112 languages
- More than half of our searches come from outside the U.S.

Data Growth

- Web expands/changes: billions of new/modified pages every month
- Every few hours we crawl/refresh more than entire Library of Congress
- YouTube gains over 13 15 1824 24 60 hours of video every minute, 4+ billion views every day

Latency Challenge

- Speed of Light in glass: 2 x 10⁸ m/s = 2,000 km / 10 ms
- "Blink of an eye response" = 100 ms

ATLAS 2010 Traffic report

Posted on Monday, October 25th, 2010 | Bookmark on del.icio.us

Google Sets New Internet Traffic Record by Craig Labovitz

This month, Google broke an equally impressive Internet traffic record — gaining more than 1% of all Internet traffic share since January. If Google were an ISP, as of this month it would rank as the **second largest** carrier on the planet. Only one global <u>tier1 provider</u> still carries more traffic than Google (and this ISP also provides a large portion of Google's transit).

Handling Failed Operations

- A single TE Op corresponds to multiple RPCs from OFC to Devices
 - Every op could result in partial success
 - Resulting state can be: old value, new value or mix
- Add Status bit (Clean/Dirty) to every TE DB entry
- TE Server Behavior:
 - 'Key' is marked dirty in TE DB upon issuing operation
 - 'Key' is marked clean in TE DB when OFC returns success
 - If 'Key' is dirty, it can be cleaned only with further ops
 - Assume idempotent operations

Dirty Keys Example 1

Dirty Keys and Dependencies

Protocol Challenges

- Dealing with failures gracefully
 - Lost and out-of-order RPCs
 - Switch, server, and application failures
- Failure isolation
 - Site A to Site B problem should not affect Site A to Site C
- Ensuring consistent TE DB view between OFC, TE and devices across restarts

Balboa Gateway - Overview

Site Level Aggregation: Pros

- Local failure reaction for most failures w/out requiring TE server cooperation
 - Single trunk failures, single switch failure, etc
 - Means TE server failure is not catastrophic
- Tunnel management requires less hardware resources
- Algorithm and TE-Server scalability is much improved
 - Site-level tunnels
- Simplified debugging

Site Level Aggregation: Cons

- Optimization under asymmetric failure harder
 - requires re-balancing traffic within site
- Each op applied on multiple switches
 - Protocol must be robust to partial failures
- Switch restart is more challenging
 - Hardware up but device not yet programmed
- OFC implementation of synching router TE state on reboot is hard. Because TED is changing on the fly (since the other router is still up)
- Barriers with logical time to ensure routers accept programming with respect to fixed topology view

Gateway Design Highlights

- Aggregation for 'read only' network state from each OFC
- Proxy 'TE op to site X' from Master-TE-Server to master
 OFC for site X
- Merges and publishes OFC state asynchronously
 - Topology, routes, tunnels, and network stats
- Stateless

TE Topology Manager

- From current 'trunk states' derive an aggregated topology that will be used as input to the algorithm
 - Input: Full topology dump from Gateway (from all sites). Per trunk level stats.
 - Output: A list of 'site-site' edges with capacities
- Delivers an asynchronous event to main loop to trigger an algorithm run on any change
- Challenges:
 - Handling cut-off aggregation
 - Handling drains
 - Dealing with 'trunk' flaps and rate-controlling churn
 - Distinguishing important vs. minor changes
 - Ability to suppress triggers if topology changes are minor and are flapping

Closed Loop Test Framework Google

- 'N' hosts to simulate 'N' nodes in network
 - A real application runs at each of the 'N' hosts
 - Hosts are source of application demand
- BwE is used for admission control for apps
- All control servers are real binaries
- Only fake aspect is:
 - virtualization of the actual switch
 - how switches are connected (topology) and with what capacities

Example switch 1G 2G configuration:

Feedback loop illustration:

- At start, TE programs only shortest path since demand is low
- BwE throttles apps to shortest path capacity
- TE observes demand ~= capacity, and creates more paths
- Once paths are installed, BwE observes increased available capacity, and throttles apps at higher limits

Enabling Testbeds

B4 TE Components Overview

B4 TE Components Overview

Example of Traffic Split (75%/25%) Coogle

TE Path Allocation

flow group	Allocation	Paths and splits	
		CHS-MRN: CHS-ATL-MRN:	75% 25%

Installing Path Allocation in Devices

Per Site State

 Tunnel: A site level path (at all sites in the path)

- Tunnel group: Split between multiple tunnels (at ingress site)
- Flow Group to Tunnel Group mapping (at ingress site)

Operationally: Centralized vs. Distributed

- Upgrades: Distributed models requires you to upgrade all routers. This is safer but slower. In centralized, we have handful of servers. Its faster but can be riskier.
- How can we make Centralized Safer?
 - Design server to have well defined and abstract inputs and outputs.
 Most of the logic is stateless and determination.
 - From production instance allow replicating 'abstract inputs' to test servers. (available during regular developer testing)
 - Allows code to be exposed to reality much sooner
- New features are designed so that they can be enabled/disabled on a flow by flow basis
- What if there is a malicious bug in centralized server?
 - This is a risk.
 - Rely on regular traffic monitoring to detect and fix such conditions manually
 - Quick manual procedures to fallback to distributed routing

Sample WAN

West --> East demand: 400Gb/s

Traffic Engineering Example

West --> East demand: 300Gb/s

Traffic Engineering Example

West --> East demand:

100Gb/s low latency

200Gb/s bulk transfer

Path Allocation Algorithm

- Path Selection
 - Find static k shortest possible paths between src and dst
- Path Ordering and Grouping
 - Group similar latency paths into path preference groups
 - Sort paths preference group by latency
- Compute Flow Group Allocation:
 - o For each flowgroup, input:
 - Sorted paths preference groups
 - Demand with priority (utility function) from broker
 - Exhaustive waterfill algorithm
 - Fill preferred paths first

Path Allocation Algorithm (cont)

- Paths splits determination
 - o For each flowgroup:
 - Take allocation to its paths
 - Initial splits of paths is the ratio of allocations
 - Quantize the splits to match hardware restrictions
- Final Output: Quantized path splits for each flow group
 - Example: Flow: A:B_HIPRI: A->C->B 75%, A->B 25%

TE Flows Manager

- Role: Provide a unified demand matrix to the allocation algorithm
- Input: Global Demand from Bandwidth-Broker
- Output Interface: {src, dst, pathing-class} -> utility curve
 - aggregate data across multiple QoS into separate pathing classes
 - Smooth demand and peak management
 - Expire old data
 - Log data for replay

Tunneling Module

- Key Functions:
 - Maintains a TE-Session with each OFC (proxied via Gateway)
 - Translate Path-Assignment to per site TE State
 - Allocates free IP-Addresses to New Paths
 - Manages deletion of old paths
- Gets trigger from algorithm module to install new state
 - Computes per site 'diffs' and installs the diffs on each site
 - Handles failed ops and retries
 - Ensures proper sequencing of operations
- Provides persistent state across restarts of TE server (by storing them in Paxos)

Per-Site Traffic Eng DB (TED)

Collection of: Key, Value tuples

Key Types	Value
Tunnel ID	Site level path and IP Address
Tunnel Group ID	List of <tunnel id,="" weight=""> tuples</tunnel>
Flow Group ID	DSCP match spec, Destination cluster prefixes, Tunnel Group ID

Tunnel Management module

- Input:
 - Desired Path Allocation for All flow groups
 - Current Configured TED at each Site
- Output:
 - New Desired TED at each site
 - O A collection of 'Ops' such that:
 - for each site: Current TED + Ops => Desired TED
 - A consistent (make-before-break) schedule of 'Ops'

TED And Ops: Example (Contd...)

Site	Key	Value	Comment
А	T1	A->B (1.2.3.4)	Tunnel
А	T2	A->C->B (1.2.3.5)	Tunnel
А	TG1	T1 0.75 T2 0.25	Tunnel Group
A	FG1	TG1, B Cluster Prefixes	Flow Group Mapping

В	T1	A->B (1.2.3.4)	Tunnel
В	T2	A->C->B (1.2.3.5)	Tunnel

	С	T2	A->C->B	Tunnel
l			(1.2.3.5)	

Ops Schedule

TED And Ops: Example (Contd...)

New Topology And Paths

Ops Schedule

New Desired TED

Site	Key	Value	Comment
A	T1	A->B (1.2.3.4)	Tunnel
A	TG1	T1 1.00	Tunnel Group
A	FG1	TG1, B Cluster Prefixes	Flow Group Mapping

В	T1	A->B	Tunnel
		(1.2.3.4)	

Computing Ops and Schedule

- Computing 'ops': Figure out 'diffs' between current and desired TED
 - Each 'diff' entry corresponds to one 'op':
 - Add, Modify or Delete
- Computing schedule of 'Ops' across all sites
 - For each 'Op' also compute 'Dependent ops'.
 - Example: 'Add TG1' has 'Add T1' as a dependent op
 - o An 'Op' is issued only when all Ops it depends on are successful.

If All 'Ops' succeed then OFC TED is same as Desired TED

Dirty Keys and Dependencies

- Solution:
 - Until an 'op' succeeds on a 'key' track old values as well
 - Stored in per key: ValueLog
 - o In previous example:
 - TG1 has ValueLog: {T1, T2}
- Notes:
 - ValueLog is valid only if a key is dirty
 - Only used for determining 'ops' dependencies
 - It is not interpreted by OFC

Dependency Across Set of Ops

Session Setup Protocol (1 of 2)

- Session setup would provide:
 - TE mastership to OFCs and vice versa.
 - TE Server with Current TED (when TE restarts)
 - OFC Server with Current TED (when OFC restarts)
 - Mechanism to enforce inorder execution of TE ops
 - Ensures OFC TEDs do not change without notifying TE

Session Setup Protocol (2 of 2)

- Session Create (Initiated by TE):
 - Exchange TE_id (TE master instance unique ID)
 - Exchange OFC_id (OFC master instance unique ID)
 - Exchange TE generated Initial Sequence Id
 - Session_id: (TE_id, OFC_id)
- OFC accepts Ops with:
 - o op.session_id == current session_id
 - o op.sequence_id >= last seen sequence_id
- Session Initialize:
 - TE->OFC: Get TED
 - Success: TE Uses that TED
 - Failure: If TE has a TED it sets that TED on OFC
 - If Neither has TED, TE resets that Site
- Henceforth, issue ops based on 'Desired Current' TED
 - OFC checks session validity on all 'Ops'

TE Server Configuration Options

- Various knobs to control TE Scope at TE-Server
 - disable site completely:
 - Example: disable_site: ATL
 - No transit, ingress or egress TE traffic goes via ATL
 - o disable a flow group
 - Example: disable_flow_group: src: ATL dst: ANY
 - Traffic from ATL->* does not use TE
 - disable globally [Big Red Button]
 - Example: disable_site: ANY
- Knobs affecting pathing decisions
 - o link metric (for shortest path) and link fill threshold (like rsvp)
 - the metrics are specified at a Site granularity
 - o weights granularity (Balboa supports weights of multiples of 0.25)
 - maximum number of paths for a flow group (max value 4)
 - o grouping threshold: group paths with cost within threshold together

Summary: Solutions for challenges Goo

- Dealing with failures gracefully
 - Introduce "Dirty" status per TED entry
 - Single failures handled gracefully, multiple failures converge:
 - React immediately to router down, in controlled manner to router up. Add down_db to TED
 - Add session/seq number to ops
- Failure isolation
 - Support streaming ops
- Ensuring consistent TED view between OFC, TE and devices across restarts
 - Cache TED in OFC, TE
 - Smart sync from OFC to devices
 - Do Automatic Consistency checks at the TE-Server
- Scalable: Provide abstraction to TE.
 - OFC provides abstraction of site
 - o TE maintains and manipulates state at site level
- Allow manual control
 - Provide TE config controls, CLI command on OFC, add Drain-DB to TED

Summary: TE protocol information flow

TE DB Consistency Checks

- Periodically perform TED consistency checks between the master TE Server and each OFC
 - Initiated by TE Server
 - Alert if TEDs are found to be inconsistent (indicates a bug !!)
 - TE-Ops can restart the master TE Server which in many case will fix the problem
- Consistency check algorithm challenges:
 - o is not same as identical TED
 - Has to work in face of streaming operations
 - Should have minimal interference to TE normal operation
 - Should not 'lock' TE-Server and/or OFC
 - o Should be accurate (no false positive) for it to be effective
- Has been instrumental in finding hard to reproduce bugs
- More details in design document

Handling router restarts

- When a router goes down, neighbors react immediately
- When CF comes back up, neighbors must not send TE traffic unless its TE state is programmed
- Issue:
 - X sees trunks to C as up
 - X needs to know C is not TE ready (but is fine for ISIS)

Adding Down DB to TED

- TEServer communicates to X that 'C' is not TE Ready (via TED)
- Sequence (on router down):
 - OFC marks in topology C_not_te_ready
 - For all 'Y' neighbors: TE 'desired TED' has:C_not_te_ready
 - TE updates neighboring OFCs
- OFC: If a router is not _te_ready do not use that router as next hop
- Sequence (on router up):
 - Y programs router C completely
 - Y marks C as te_ready in topology
 - TE deletes C_not_te_ready from TEDs
 - o X OFC can now start using C
- Assumes: propagating te_ready is faster than router restart

Traffic Engineering Database

Topology And Paths

Site	Key	Value	Comment
A	T1	A->B (1.2.3.4)	Tunnel
A	T2	A->C->B (1.2.3.5)	Tunnel
A	TG1	T1 0.75 T2 0.25	Tunnel Group
A	FG1	TG1, B Cluster Prefixes	Flow Group Mappng

С	T2	A->C->B	Tunnel
		(1.2.3.5)	